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Type of paper: Opinion 57 

Abstract 58 

Many ecosystems around the world are rapidly deteriorating due to both local and global 59 

pressures, and perhaps none so precipitously as coral reefs. Management of coral reefs 60 
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through maintenance (e.g., marine protected areas, catchment management to improve water 61 

quality), restoration, as well as global and national governmental agreements to reduce 62 

greenhouse gas emissions (e.g., the 2015 Paris Agreement) are critical for the persistence of 63 

coral reefs. Despite these initiatives, the health and abundance of corals reefs are rapidly 64 

declining and other solutions will soon be required. We have recently discussed options for 65 

using assisted evolution (i.e., selective breeding, assisted gene flow, conditioning or 66 

epigenetic programming, and the manipulation of the coral microbiome) as a means to 67 

enhance environmental stress tolerance of corals and the success of coral reef restoration 68 

efforts. The 2014-2016 global coral bleaching event has sharpened the focus on such 69 

interventionist approaches. We highlight the necessity for consideration of alternative (e.g., 70 

hybrid) ecosystem states, discuss traits of resilient corals and coral reef ecosystems, and 71 

propose a decision tree for incorporating assisted evolution into restoration initiatives in order 72 

to enhance climate resilience of coral reefs. 73 

 74 

Introduction 75 

Human activities that began with the industrial revolution in the late 18th

 85 

 century have driven 76 

an incredibly rapid increase in greenhouse gas concentrations in the Earth’s atmosphere. As a 77 

result, air and ocean temperatures have risen and continue to rise at a pace not experienced by 78 

life on Earth for at least 50 and possibly even hundreds of millions of years (Hönisch et al., 79 

2012; Wright &  Schaller, 2013; Zeebe et al., 2014). These global environmental changes, as 80 

well as the often more localized direct human impacts such as over-harvesting, destructive 81 

fishing, anchor damage, ship groundings, and pollution, have precipitated broad ecological 82 

declines, shifts, and extinctions across a variety of ecosystems (Parmesan, 2006), including 83 

coral reefs (Pandolfi et al., 2003).  84 

Higher-than-usual seawater temperatures can break down the obligate association between 86 

the reef-building coral animal and its dinoflagellate endosymbionts (Symbiodinium spp.), 87 

causing coral bleaching and often extensive mortality (Hoegh-Guldberg, 1999). Ocean 88 

acidification (OA) is a consequence of atmospheric carbon dioxide entering the water 89 

column, resulting in an increase in hydrogen ion concentration that shifts the seawater 90 

carbonate chemistry, resulting in a lower pH. OA increases the energetic demands for 91 

calcifying organisms like corals, may cause a reduced calcification rate (Andersson & 92 

Gledhill, 2003) and may exacerbate the negative impact of elevated temperature by reducing 93 

the corals’ bleaching tolerance limits (Anthony et al., 2008). A number of severe bleaching 94 
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events have assaulted coral reefs around the world over the past 35 years, including in 95 

1981/82, 1997/98, 2001/02, 2005/06, 2010 and 2014/16. The most recent events have seen 96 

extreme bleaching with 75% of the corals bleached in some locations in Hawaii (Minton et 97 

al., 2015), and 93% of surveyed reefs on the Great Barrier Reef (GBR) exhibiting some level 98 

of bleaching with >50% coral mortality observed at many locations in the northern GBR 99 

(Great Barrier Reef Marine Park Authority, 2016; The Conversation, 2016a). Climate models 100 

predict that coral reefs will face temperature extremes annually from between the mid-2050s 101 

and the mid-2070s (van Hooidonk et al., 2013, 2016), and possibly even from as early as the 102 

mid-2030s (The Conversation, 2016b). Given recovery of coral cover from severe coral 103 

mortality to the pre-disturbance state takes multiple decades (Connell et al., 1997; Coles &  104 

Brown, 2007; Emslie et al., 2008; Done et al., 2010; Jackson et al., 2014), climate 105 

projections portray a grim future for coral reefs. Thus, in addition to global efforts to reduce 106 

greenhouse gases, a toolbox of options is urgently needed for coral reef rehabilitation, repair 107 

and restoration activities. 108 

 109 

A glimmer of hope comes from the observations of an increase in bleaching tolerance at a 110 

small number of Indo-Pacific reefs following successive bleaching events (Maynard et al., 111 

2008; Berkelmans, 2009; Guest et al., 2012; Penin et al., 2013), indicating that adaptation or 112 

acclimatization to extreme temperature anomalies can occur naturally under certain 113 

circumstances. Conversely, the loss of >40% of the world’s coral reefs over the past four 114 

decades (Burke et al., 2011) and the extensive coral mortality experienced during the recent 115 

global bleaching event of 2014-16 (Eakin et al., 2016; Normile, 2016) indicates that the rate 116 

of temperature increase is outpacing the natural rate of evolution of thermal tolerance in 117 

corals, threatening coral reef ecosystem persistence into the future. Edwards and Gomez 118 

(2007) concluded that “there is little that managers can do in the face of the large-scale 119 

“natural” drivers of degradation such as climate change related mass bleaching, storms, 120 

tsunamis, and disease outbreaks.” We have recently argued that this message may be overly 121 

pessimistic in relation to large scale drivers such as ocean warming, and that the climate-122 

resilience of corals may be augmented through assisted evolution (van Oppen et al., 2015). 123 

Such innovative management methods represent a major change to our thinking about and 124 

approach to coral reef restoration (i.e., a shifting paradigm) and would increase the 125 

probability of survival of corals used for restoring degraded reefs as well as enhance the 126 

resilience of remaining natural coral populations. The present opinion paper addresses a 127 

number of issues relevant in this context; it (1) discusses the need for consideration of 128 
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alternative ecosystems that maintain varying levels of functionality (i.e., diversity, goods and 129 

services) where a return to the historical ecosystem state is no longer feasible, (2) 130 

characterizes the ecosystem attributes and coral traits that are most critical for climate 131 

resilience, (3) discusses the challenges of interventions focused on enhanced climate 132 

resilience (assisted evolution), and (4) proposes a decision framework for the incorporation of 133 

assisted evolution into coral restoration practice. We provide criteria to guide coral reef 134 

managers in decision making for implementation of coral stock obtained via assisted 135 

evolution, with the goal of promoting more climate resilient reef ecosystems.  136 

 137 

Assisted evolution and related terms 138 

Assisted evolution is the acceleration of natural evolutionary processes to enhance certain 139 

traits (Jones &  Monaco, 2009; van Oppen et al., 2015). These processes include genetic 140 

adaptation, transgenerational changes through epigenetic mechanisms and modifications in 141 

the community composition of microbes associated with the target organism. For reef-142 

building corals, we are currently evaluating whether environmental stress tolerance can be 143 

increased using the following assisted evolution approaches: (1) pre-conditioning or 144 

epigenetic programming, i.e., the exposure of adult coral colonies to environmental stress 145 

with the aim to induce heritable, increased stress tolerance and fitness in their offspring, (2) 146 

manipulation of the community composition of microbial organisms associated with the coral 147 

holobiont (the microbiome); corals associate with a wide range of microbial organisms, 148 

including Symbiodinium, prokaryotes, fungi and viruses, (3) laboratory evolution of cultured 149 

Symbiodinium under elevated temperature and pCO2

 158 

 selection followed by inoculation of 150 

coral hosts with the evolved algal cultures, and (4) selective breeding of the coral host. The 151 

latter is guided by relative bleaching tolerance in sympatry (Fig. 1) or allopatry (e.g., along 152 

the latitudinal gradient on the GBR (van Oppen et al., 2014; Dixon et al., 2015)), ability of 153 

species to cross-fertilise and genetic markers of relative stress tolerance (Jin et al., 2016). 154 

While assisted evolution is a holistic term that incorporates genetic, epigenetic and 155 

microbiome evolutionary changes, there are other terms used in the literature that focus 156 

specifically on genetic changes to increase the fitness of populations:  157 

Genetic rescue (sensu restoration) (Tallmon et al., 2004; Hedrick, 2005) is the improvement 159 

in reproductive fitness and increase in genetic diversity through outcrossing of a population 160 

previously suffering low genetic diversity and inbreeding depression. Genetic rescue is 161 

applicable to small threatened populations, and has been used successfully in conservation 162 
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efforts to recover populations of species such as the Florida panther (Johnson et al., 2010), 163 

the mountain pygmy possum (Weeks et al., 2015), the greater prairie-chicken (Bateson et al., 164 

2014), an adder (Madsen et al., 1999) and the Mexican wolf (Fredrickson et al., 2007).  165 

 166 

Assisted gene flow (Aitken &  Whitlock, 2013) is the managed movement of individuals with 167 

favourable traits (alleles/genotypes) into populations (unidirectional) to reduce local 168 

maladaptation to climate or other environmental change (either current or future change). 169 

Assisted gene flow can be used in the context of small and declining populations (Aitken &  170 

Whitlock, 2013) or keystone, foundation and resource-production species that have large 171 

population sizes (Broadhurst et al., 2008; Aitken &  Whitlock, 2013). Corals, as an example 172 

of a foundation species, have been proposed previously as candidates for assisted gene flow 173 

(Hoegh-Guldberg et al., 2008; Riegl et al., 2011) to counter the effects of climate change. 174 

While assisted gene flow has been proposed as a key conservation action to combat climate 175 

change and other threatening processes, relatively few examples of assisted gene flow are 176 

available in the literature.  177 

 178 

Evolutionary rescue refers to adaptation at a rate that results in survival of a population that is 179 

threatened with extinction (and characterized by a negative growth rate) by environmental 180 

change (Orr &  Unckless, 2014). Small populations are less likely than large populations to 181 

experience evolutionary rescue because they are more likely to lack genetic variation 182 

necessary for adaptation and therefore at a higher risk of extirpation before rescue. Evidence 183 

for evolutionary rescue mostly comes from empirical experiments with microbes (Gonzalez 184 

&  Bell, 2013). At a time of rapid environmental change, it is difficult to predict species and 185 

populations that will survive through evolutionary rescue (Aitken &  Whitlock, 2013). 186 

 187 

Other terms are also used in the literature in the context of biodiversity conservation (e.g., 188 

gene pool mixing, genetic adaptation, targeted gene flow, assisted migration), but are 189 

essentially similar to one of the above.  190 

 191 

Restoring coral reef ecosystems 192 

Ecological restoration is “the process of assisting the recovery of an ecosystem that has been 193 

degraded, damaged, or destroyed” (SER, 2004), where the restored community needs to be 194 

self-sustainable (SER, 2004; Edwards &  Gomez, 2007). Traditionally, the focus of most 195 

restoration initiatives has been to return to a pre-disturbance state (Perring et al., 2015), but 196 
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when ecosystems have changed beyond their long-term ‘natural’ variability it may not be 197 

practical or possible to restore them to their historical conditions. Unfortunately, this 198 

limitation is increasingly becoming the norm in terrestrial and marine ecosystems alike, 199 

including coral reefs. Climate change, poor water quality, coastal developments, destructive 200 

fishing, over-harvesting, and invasive species are among the many perturbations that in 201 

combination have altered the structure and species composition of coral reef ecosystems. 202 

Therefore, the broader and more flexible concept of “intervention ecology” (Hobbs et al., 203 

2011), proposed originally for terrestrial systems, may be an appropriate consideration for 204 

coral reefs. Intervention ecology focuses on managing for future change but uses history to 205 

guide (1) the retention of historical states where possible, or (2) the development of new 206 

systems that meet desired ecosystem attributes (see below) and maintain the goods and 207 

services provided by the historical system (Jackson &  Hobbs, 2009; Hobbs et al., 2011; 208 

Higgs et al., 2014).  209 

 210 

Historical (pristine) coral reefs are generally characterized by high coral cover and 211 

recruitment rates, high fish biomass, and high algal grazing rates, resulting in extensive three 212 

-dimensionality and biodiversity (Graham et al., 2013). A reduction in coral cover, fish 213 

biomass, biodiversity, and structural relief has occurred on many contemporary reef systems 214 

as a result of a number of anthropogenic disturbances (Pandolfi et al. 2003).  Such reefs may 215 

still be dominated by coral but coral species composition may have changed, or they may 216 

have reached an alternative state dominated by other organisms, and it is unlikely a return to 217 

the historical state is possible (Graham et al., 2013). If the historical ecosystem state is no 218 

longer attainable through natural recovery processes or through human intervention, either 219 

“hybrid” (those retaining some original characteristics as well as novel elements), or “novel” 220 

(those that differ in composition and/or function from present and past systems) ecosystems 221 

are two possible alternative restoration objectives that have been considered in terrestrial 222 

restoration initiatives (Hobbs et al., 2009). Novel coral reef ecosystems, composed almost 223 

entirely of species that were not formerly native to the geographic location or that might 224 

exhibit different functional properties, or both (Hobbs et al., 2009), are unlikely to be 225 

considered in coral reef restoration initiatives in the near future, but we propose that the 226 

hybrid system concept receives further attention. The challenge, however, is to define the 227 

desired attributes of hybrid ecosystems (i.e., the restoration goals) and the interventions 228 

required for establishing and maintaining alternative ecosystem states (i.e., hybrid 229 

ecosystems), as restoration goals are context dependent and will differ between locales. 230 
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Defining these is critical for developing the actions required for restoration, and for 231 

identifying the coral traits that should be targeted and improved using assisted evolution 232 

methods. 233 

 234 

Coral reefs are integral to coastal and economic stability and valued in the billions of dollars 235 

annually (Costanza et al., 1997, 2014; Bishop et al., 2012; Stoeckl et al., 2014). Therefore, 236 

primary considerations for restoration include the attributes: coral cover, biodiversity, self-237 

sustainability, functional diversity and redundancy, structural complexity (Kuffner & Toth, 238 

2016) and chiefly, resilience (i.e., the magnitude of the perturbation that can be buffered by 239 

an ecosystem prior to changes in ecosystem structure (Holling &  Gunderson, 2001)). Live 240 

coral cover is an important reef ecosystem attribute and one of the most widely used metrics 241 

of coral reef performance world-wide (Gardner et al., 2003; De'ath et al., 2009; Edmunds et 242 

al., 2014). For example, scleractinian (stony) coral cover is the primary explanatory variable 243 

of fish abundance at Lizard Island (GBR), in comparison with other attributes such as 244 

specific coral morphology cover (i.e., branching, corymbose, or massive), benthic habitat 245 

diversity and complexity, and species richness (Komyakova et al., 2013). This suggests a 246 

critical need to maintain both coral cover and diversity at a locally informed threshold in the 247 

hybrid ecosystem state; coral reef structure and function can be strongly location-specific 248 

(e.g., low diversity functional reefs like the Eastern Tropical Pacific and Hawaii versus 249 

diverse reefs such as in the central Indo-Pacific). For Caribbean reefs it has been suggested 250 

that ~10% live coral cover is critical for maintaining positive calcium carbonate production 251 

rates and thus reef growth (Perry et al., 2013).  252 

 253 

Self-sustainability at a locally defined amount of mean coral cover and diversity that is able 254 

to support a locally defined amount of diversity of other reef organisms (i.e., a benefit to the 255 

natural organisms that comprise the ecosystem) is another desired attribute. Further, the 256 

system should have the capacity to adapt to future environmental perturbations. The broad 257 

strategy of maximizing genetic and epigenetic variation upon which selection can act in 258 

stochastic environments should be used as part of the management portfolio. We recognize 259 

that not all perturbations are predictable, but for the primary elements of concern at the global 260 

scale such as increased water temperature and ocean acidification, actions can be taken for 261 

enhancing adaptation and acclimatization to such stressors (Dixon et al., 2015; Putnam et al., 262 

2016), while considering potential ecological trade-offs as a consequence of the enhanced 263 

traits. For instance, thermal tolerance acquired by hosting clade D Symbiodinium is associated 264 
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with slower growth (Little et al., 2004), as well as lower lipid storage, and smaller egg sizes 265 

during reproduction in the coral, Acropora millepora (Jones &  Berkelmans, 2011).  266 

 267 

Further, it is well established that coral reefs are major biodiversity “hotspots” (Roberts et al., 268 

2006) and that sustaining biodiversity provides ecosystem function as well as goods and 269 

services (Mace et al., 2012). Functional redundancy, i.e., different species with similar roles 270 

in communities that can be substituted with little impact on ecosystem processes and 271 

function, will enhance or protect ecosystem performance under environmental perturbation 272 

(Nystrom, 2006). For example, functional redundancy resulted in a regime shift from an algal 273 

to coral dominated state, not due to the presence of large herbivores typical to reefs 274 

(parrotfish and surgeon fish) as expected, but to the functional redundancy of a batfish 275 

(Platax pinnatus) in a primary herbivore role (Bellwood et al., 2006). It is therefore 276 

recommended to ensure functional redundancy remains.  277 

 278 

Critical coral traits for climate resilience: targets for assisted evolution 279 

Ocean warming and acidification are the main stressors related to increasing greenhouse gas 280 

concentrations in the atmosphere that threaten scleractinian corals, the system engineers of 281 

coral reefs. Related to climate warming are a number of additional perturbations that impact 282 

negatively on reef-building corals, i.e., more extreme wet seasons causing seawater salinity to 283 

drop and influxes of pollutants and nutrients to rise, an increase in disease incidence 284 

(Maynard et al., 2015), and an increased frequency and intensity of storms and cyclones. 285 

Therefore, the critical climate resilience traits of corals include tolerance to warmer and 286 

acidified waters, disease resistance, tolerance to fluctuations in salinity and exposure to 287 

nutrients, herbicides and other pollutants, and higher skeletal densities to better withstand 288 

storms and cyclones and to maintain the ability to provide coastal protection. To obtain corals 289 

with these traits, some approaches can be guided by coral phenotypes, but other methods 290 

require knowledge of the cellular processes and genetic architecture underpinning these 291 

desired traits. Considerable progress has been made in dissecting organismal responses to 292 

environmental stress (Kültz, 2003, 2005), including corals (Kenkel et al., 2014), and we 293 

discuss how this knowledge can inform assisted evolution approaches to enhance coral stress 294 

tolerance. 295 

 296 

Certain facets of the cellular stress response are not stressor-specific (Gasch et al., 2000; 297 

Kültz, 2005; Anderson et al., 2015). Instead, a diverse array of stressors lead to an increase of 298 
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toxic chemicals in the cell (particularly reactive oxygen species [ROS]), that cause damage to 299 

macromolecules (e.g., membrane lipids, DNA and proteins). The universal “minimal cellular 300 

stress response” has evolved to recruit the same set of cellular functions irrespective of the 301 

stressor. This includes cell cycle control, protein chaperoning and repair, DNA and chromatin 302 

stabilization and repair, removal of damaged proteins, and certain aspects of metabolism 303 

(Kültz, 2003). Further, while there are many taxon-specific stress response genes, many of 304 

the genes and proteins involved in the minimal cellular stress response are conserved across 305 

all kingdoms of life (Kültz, 2003). Targeting genes that underpin the minimal cellular stress 306 

response (for instance through marker-assisted selective breeding (Lande & Thompson, 307 

1990)) thus provides an opportunity to develop coral stock with enhanced tolerance to a 308 

number of stressors simultaneously. In support of this notion, a recent study showed that the 309 

same quantitative trait loci (QTLs) for antioxidant capacity in corals are informative for 310 

relative tolerance to temperature anomalies and poor water quality (Jin et al., 2016). In 311 

another example, conspecific corals from a warm backreef location had higher levels of 312 

ubiquitin-conjugated protein than those from a cooler forereef location, which were 313 

maintained after transplantation to the cooler site (Barshis et al., 2010). Ubiquitination is a 314 

process by which proteins are tagged for degradation and the cell rids itself of damaged 315 

proteins, and is an element of the minimal cellular stress response. Further, many coral and 316 

Symbiodinium gene expression studies have demonstrated that genes known to form part of 317 

the minimal cellular stress response (Kültz, 2003, 2005) are regulated in response to heat 318 

(Desalvo et al., 2008; Csaszar et al., 2009; Voolstra et al., 2009; DeSalvo et al., 2010; Kenkel 319 

et al., 2011; Meyer et al., 2011; Barshis et al., 2013; Polato et al., 2013; Levin et al., 2016), 320 

pollutants (Morgan et al., 2005), UV radiation and salinity (Edge et al., 2005). Innate 321 

immune response genes have also been found to be regulated in corals exposed to 322 

environmental stress (Barshis et al., 2013; Pinzón et al., 2015). This is unsurprising given 323 

high levels of ROS are known to trigger the coral host innate immune response (Weis, 2008). 324 

Other calcifying marine invertebrates, such as oysters, show regulation of the same sets of 325 

genes involved in innate immunity and the minimal cellular stress response when exposed to 326 

elevated temperature, pCO2 or infected with a pathogen (Anderson et al., 2015). The 327 

increased climate resilience in the Sydney oyster as a by-product of selective breeding for 328 

pathogen resistance (Parker et al., 2011; Thompson et al., 2015), confirms that selection on 329 

components of the minimal cellular stress response may have positive effects on tolerance to 330 

a number of different stressors. Such cross-tolerance has also been documented for other 331 

organisms including crop plants (Perez &  Brown, 2014). 332 
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 333 

The existence of a universal, minimal cellular stress response further indicates that enhanced 334 

resistance of corals to stressors such as temperature and pCO2 may be accomplished by 335 

exposure to another (and perhaps single) stressor that is easy to simulate in the laboratory, 336 

such as high light intensity, and perhaps can even be applied at small scales in the field. 337 

Higher levels of natural solar radiation experienced by one side (the west side) of 338 

hemispherical colonies of the coral, Goniastrea aspera (proposed reclassification: Coelastrea 339 

aspera; Huang et al., 2014), subsequently conferred increased thermal bleaching tolerance to 340 

the west sides compared to their east sides (Brown et al., 2002; Brown &  Dunne, 2008). 341 

These results support the presence of (minimal) stress responses in corals that are not specific 342 

to a particular stressor, and justify further research to explore the efficacy of conditioning 343 

with only one stressor to attempt the augmentation of general stress tolerance in corals. 344 

However, this field of research is still in its infancy, with some studies showing contrasting 345 

effects. For instance, laboratory pre-conditioning of the coral Porites porites with elevated 346 

pCO2 resulted in slower rates of calcification and feeding when they were subsequently 347 

submitted to experimental heat stress (Towle et al., 2016). Further, while colonies of 348 

Acropora aspera enhanced their thermal bleaching tolerance following pre-conditioning with 349 

heat, this was not the case for A. millepora (Middlebrook et al., 2008). Photosymbionts 350 

inhabiting A. millepora colonies that were pre-conditioned by warming had improved their 351 

ability to dispose of excess light energy as heat compared to those in non-conditioned 352 

colonies, but were no more tolerant to subsequent bleaching (Middlebrook et al., 2012). 353 

Positive transgenerational acclimatization and parental effects have been documented in the 354 

coral Pocillopora damicornis following preconditioning of parents to high temperature and 355 

pCO2

 358 

, but the relative frequency and importance of this transgenerational plasticity is even 356 

less well understood (Putnam &  Gates, 2015). 357 

Integration of assisted evolution into coral reef restoration: a decision tree 359 

van Oppen et al. (2015) previously proposed four approaches to develop coral stock with 360 

enhanced environmental stress resistance, and research is underway to assess the value of 361 

each of these in different environmental settings. It is important that assisted evolution 362 

becomes embedded within coral reef restoration initiatives, because the worldwide extensive 363 

loss of coral cover suggests natural rates of evolution of stress tolerance are too slow to 364 

maintain functional coral reef ecosystems into a future characterized by rapid climate change. 365 

As with any restoration initiative, assisted evolution approaches need to be guided by 366 
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historical information, contribute to the restoration of ecological structure and function, and 367 

developed stock needs to have the ability to adapt further to contemporary selection pressures 368 

(i.e., sufficient levels of genetic diversity need to be maintained). This means that coral stock 369 

enhanced for climate resilience needs to be developed for a number of coral species 370 

representing different functional groups, including the rapidly growing branching corals, as 371 

well as species with massive and encrusting morphologies. We suggest a process that 372 

considers the lowest levels of intervention first, and progressing to more aggressive 373 

intervention only when necessary (Edwards & Clark, 1999; Jones, 2003; Edwards &  Gomez, 374 

2007; Hobbs et al., 2014). The process is iterative and forms part of an adaptive management 375 

framework, the outcomes of which feed back into the process with the aim of improved reef 376 

status. 377 

 378 

One of the initial considerations of this approach is to determine whether restoration is 379 

required (Fig. 2). Restoration may be desired under a number of scenarios, including when 380 

coral cover is approaching or has declined below a certain threshold, or when coral 381 

functional, species or genetic diversity has declined significantly. If restoration is desired, an 382 

assessment of recoverability is necessary, as a reef may not be currently recoverable when for 383 

example it is chronically polluted, it has no or few herbivores, it has high numbers of 384 

predators such as crown-of-thorns starfish (COTS) or is exposed to a high disturbance 385 

frequency. In those instances, strategies to enhance recoverability would be the primary 386 

intervention effort, such as catchment management, the establishment of marine protected 387 

areas and/or no-take zones, macroalgal removal, and active COTS control (Anthony 2016).  388 

 389 

If a reef is deemed in need of restoration and is also recoverable, the next step is to explore 390 

the key missing links in the recovery chain, i.e., are the physical structures of the reef and 391 

microbial biofilms suitable for larval recruitment (suitability) and is larval supply sufficient 392 

(connectivity/supply). If a sufficiently large number of larvae reach the reef, but recruitment 393 

is poor, options to enhance recruitment include: removal of fine sediments or deployment of 394 

artificial reef settlement structures, the optimization of the three-dimensionality of 395 

recruitment surfaces, and the coating of recruitment surfaces with biota and semiochemicals 396 

(i.e., chemical signals from one organism that modify the behaviour of a recipient organism) 397 

that induce attachment and metamorphosis in coral larvae (Negri et al., 2003; Webster et al., 398 

2004; Tebben et al., 2011; Tebben et al., 2015). If the reef substratum is healthy and suitable 399 

for larval recruitment but few larvae reach the reef, the number of larvae reaching the reef 400 
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substratum can be actively increased by collecting coral spawning slicks, rearing the embryos 401 

to mature larvae in in situ floating nurseries, and pumping mature larvae onto the substratum 402 

(Heyward et al., 2002; Edwards et al., 2015). Alternatively, larvae can be reared ex situ and 403 

subsequently released onto the reef (Guest et al., 2014; Chamberland et al., 2015), or gravid 404 

colonies can be transplanted prior to the reproductive season (Horoszowski-Fridman et al., 405 

2011). A combination of additional physical structures, optimization of the recruitment 406 

surfaces and enhancement of larval supply may also be considered.  407 

 408 

A key issue in coral reef restoration is the resilience of the coral stock used for restoration. 409 

Early coral life stages generally have very high levels of mortality during their first year of 410 

life (Wilson &  Harrison, 2005; Edwards &  Gomez, 2007; Guest et al., 2014). Survival of 411 

early recruits may be increased through minimizing overgrowth by filamentous algae by 412 

coating settlement surfaces with non-toxic antifoulants (Tebben et al., 2014), an approach 413 

that has not yet seen any large-scale testing, or through the use of a protected nursery grow-414 

out stage to allow the recruits to increase in size before deployment onto the reef. Most coral 415 

reef restoration initiatives have used coral fragments obtained by breaking adult coral 416 

colonies into smaller pieces, and in some cases fragments are subsequently attached to a line 417 

or hard substrate and grown out in an in situ floating nursery before being explanted into the 418 

reef environment (Rinkevich, 2014). This approach overcomes the high mortality associated 419 

with small recruit size but has a number of disadvantages, including the generally low 420 

genotypic diversity in the restoration stock obtained in this way and the possible negative 421 

impact it has on the reef, as healthy corals are sacrificed to produce the fragments.  422 

 423 

The enhancement of coral resilience to environmental stress through assisted evolution is 424 

aiming at increasing survival of coral stock used for restoration (van Oppen et al., 2015). 425 

Within two of the proposed assisted evolution approaches for corals (modification of 426 

microbial community composition and selective breeding), the level of intervention can be 427 

scaled based on the genetic correspondence of the enhanced material to the native stock. Our 428 

guidelines follow those of rangeland restoration practitioners (Jones, 2003), who recommend 429 

that in the development of more resilient stock the most “local” options must always be 430 

considered before any non-native ones. There is extensive evidence for local adaptation in 431 

corals (Berkelmans & van Oppen, 2006; Dixon et al., 2015). Correspondingly, the different 432 

options for sourcing stress-resistant microbes (e.g., algal endosymbionts, prokaryotes, fungi) 433 

to inoculate corals are colonies growing on the same reef, a more distant reef in the same 434 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

region, or from a completely different part of the world (Riegl et al., 2011). For selective 435 

breeding, intraspecific hybridization can be conducted using colonies from distinct habitats 436 

on the same reef (e.g., slope and flat), colonies from nearby reefs, or colonies from more 437 

distant reefs. Alternatively, colonies belonging to different species can be crossed to create 438 

interspecific hybrids (Willis et al., 1997). It should be noted that even if a genetically more 439 

distant breeding stock is initially used to develop the desired stock, backcrossing to the native 440 

population for multiple generations may increase the proportion of native genetic material. 441 

Subsequent inter-crossing, in combination with selection for the desired trait at each 442 

generation, may result in increased fitness. Resistance to fungal blight disease has been 443 

introduced into the American chestnut in this manner. The American chestnut once 444 

dominated North America, but was decimated following the introduction of a fungus over a 445 

century ago that causes chestnut blight. Initially, the American chestnut was hybridized with 446 

the Chinese chestnut (which has blight resistance encoded by a number of genes that are 447 

absent in the American chestnut), generating an F1 generation (50% American chestnut). 448 

Three backcross generations to the American chestnut followed by two generations of inter-449 

crossing has resulted in a BC3F3

 452 

 generation (94% American chestnut), but with enhanced 450 

disease resistance compared to the original American chestnut (Clark et al., 2016).  451 

In an alternate approach to develop blight resistant American chestnut trees, an oxalate 453 

oxidase gene from wheat was inserted into the American chestnut genome through genetic 454 

transformation; the transgenic trees show enhanced pathogen resistance (Zhang et al., 2013; 455 

Newhouse et al., 2014) because the enzyme product directly neutralizes the main weapon of 456 

the fungus, oxalate. While genetic engineering techniques can be challenging, especially in 457 

non-model organisms, and also tend to receive considerable public resistance, such 458 

approaches may produce desirable results faster and at a lower cost compared to selective 459 

breeding (Dominguez et al., 2015; Bolukbasi et al., 2016). However, a detailed understanding 460 

of the disease etiology and the cellular pathways underlying environmental stress responses is 461 

required to direct such biotechnological approaches. In this context, the development of 462 

QTLs for environmental stress tolerance in corals (Jin et al., 2016), and the growing body of 463 

knowledge on the interactions between coral host and Symbiodinium symbionts (Barott et al., 464 

2015; Parkinson et al., 2015), the host and symbiont genes regulated in response to stress 465 

(Barshis et al., 2013; Levin et al., 2016) or under selection from environmental variables such 466 

as temperature (Lundgren et al., 2013; Bay &  Palumbi, 2014), are important developments.  467 

 468 
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All of the interventions listed above must be guided by agreed-upon restoration goals and be 469 

subjected to rigorous risk-benefit analyses that incorporate both ecological/evolutionary 470 

impacts on coral reef ecosystems as well as socio-economic aspects such as the cost and 471 

public acceptance of the intervention. These analyses will assist in the development of a 472 

regulatory framework to decide whether an intervention should/can be implemented and 473 

when. The first steps to implementing restoration of a reef using modified stock would be 474 

controlled laboratory trials, followed by small-scale field trials, for example on isolated reefs 475 

that do not provide surrounding reefs with dispersing coral larvae. Hence, knowledge of reef 476 

connectivity and gene flow is a critical component of the risk/benefit analyses. 477 

 478 

A hypothetical example of how to use the proposed decision tree (Fig. 2): the 2016 479 

bleaching event on the GBR 480 

In early 2016, the GBR experienced the most severe coral bleaching event on record. More 481 

than 50% of coral was lost from many reefs in the northern third of the GBR as a 482 

consequence, with little to no bleaching-related mortality observed in the central and southern 483 

sectors of the GBR (Great Barrier Reef Marine Park Authority, 2016; The Conversation 484 

2016a). This contrasts with the patterns of other severe mass bleaching events on the GBR 485 

where the greatest impacts were recorded in the central and southern GBR (Berkelmans et al., 486 

2004). 487 

 488 

“Is restoration needed?” is the first point in the suggested decision tree (Fig. 2). There are 489 

many questions about the prospect for the far northern GBR to recover naturally. Will the 490 

remaining corals be able to produce sufficient larvae that can recruit onto the denuded areas? 491 

Will coral larvae from the Torres Strait and Papua New Guinea to the north, from the Coral 492 

Sea to the east, from more southern GBR reefs, or from deeper waters be dispersed and 493 

recruit to the northern GBR and help restore coral cover and diversity? Has there been a shift 494 

in coral community composition, with some of the more bleaching-sensitive taxa being 495 

specifically decimated? The answers to these questions are mostly unknown and are being 496 

assessed with ongoing surveys following the bleaching event. If coral cover shows few or no 497 

signs of recovery over the next several years, active restoration efforts may be desired.  498 

 499 

“Is the coral community recoverable?” is the next question in the decision tree. Given there is 500 

no substantial coastal development north of Cooktown and water quality is good, the answer 501 
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to this question will likely be ‘yes’. This will also depend on the progression of a COTS 502 

outbreak which is currently taking place on the GBR.  503 

 504 

“Are reef structure and larval supply adequate for new recruitment?” Surveys are required to 505 

examine whether reefs have accumulated a large amount of rubble and/or sediment, which 506 

would reduce successful larval settlement and juvenile survival. While unsuitable reef 507 

structures are more likely to be an issue in the case of disturbances such as ship groundings or 508 

cyclones rather than bleaching, reefs that are denuded of coral may erode and lose their three-509 

dimensional structure. If the reef structure is appropriate, the question is whether larval 510 

supply is sufficient for natural recovery to occur. This can be assessed based on the numbers 511 

of new recruits observed on the northern reefs over the next few years. Population 512 

genetic/genomic studies in the northern GBR and surrounding regions provide insight into 513 

patterns of coral dispersal. Acropora coral populations in the northern GBR have been shown 514 

to be largely open with high levels of gene flow, suggesting that natural larval supply from 515 

within the northern GBR can be high (van Oppen et al., 2011; Lukoschek et al., 2016), but 516 

dispersal in brooding corals is likely to be more restricted and connectivity patterns are more 517 

complex (Torda et al., 2013; Warner et al., 2015). Connectivity with the Torres Strait, Papua 518 

New Guinea or the Coral Sea is not well understood, and should be examined further. 519 

Biophysical models (Luick et al., 2007; Hock et al., 2014; Thomas et al., 2014) are not well 520 

developed for corals in the northern GBR and surrounding regions, hence this is another area 521 

of research requiring more attention.  522 

 523 

The next step in the decision tree is to “select and develop restoration strategy”. The preferred 524 

strategy will depend on in-field observations. If recruit survivorship is low, but further 525 

temperature anomalies or other significant disturbances have been absent, the bleaching event 526 

and coral loss may have disturbed the natural microbial biofilms lining the reef substratum, 527 

affecting juvenile coral fitness traits, such as growth rate and competitive ability. Little is 528 

known about the composition of a healthy microbial biofilm and whether or how it can be 529 

modified or restored. It is feasible that a dipstick-type biosensor for rapid, simple and 530 

inexpensive microbiome DNA testing could be developed in the next 5 to 10 years, provided 531 

this research is appropriately resourced. If the bleaching event has caused an imbalance 532 

between coral and algal cover, then competition for space with benthic algae may have 533 

become so intense that coral recruit survival becomes too low to restore coral cover. The use 534 

of larvae settled ex situ onto settlement substrata that contain antifouling coating (Tebben et 535 
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al., 2014), followed by deployment onto the disturbed reefs may be considered. Ex situ 536 

settlement of larvae allows for the simultaneous use of coral stock enhanced for thermal 537 

tolerance in order to prepare the reef for recurring temperature extremes. 538 

 539 

Another approach under this hypothetical example is to take a proactive stance and increase 540 

stress resistance in corals along the length of the GBR in response to the recent extensive 541 

coral mortality in the northern GBR. Such an early intervention approach would require the 542 

implementation of assisted evolution methods and the deployment of stock with enhanced 543 

environmental stress tolerance onto healthy reefs with the aim to increase resilience. At 544 

present, the assisted evolution tools have neither been sufficiently developed nor their risks 545 

and benefits assessed to permit taking this step. We encourage investment in this research 546 

area so that assisted evolution and the use of coral stock enhanced for environmental stress 547 

tolerance can be realistically evaluated for coral reef restoration initiatives as necessity 548 

dictates in the near future. 549 

 550 

Conclusions 551 

We are entering an era of innovative coral reef restoration in the next 5-10 years, which may 552 

include the use of (semio)chemicals, optimized biofilms, and modified coral stock. We 553 

acknowledge that assisted evolution approaches in corals are in the proof-of-concept stage, 554 

and the scaling up of current experiments both spatially and across taxa and functional groups 555 

is eventually required for these to be implemented in coral reef restoration efforts. 556 

Advancement of methods for the large-scale rearing and deployment of coral stock 557 

manipulated for enhanced stress resistance is therefore urgently required. A pressing need 558 

also exists to preserve a representative portion of the extant genetic diversity by establishing 559 

coral and Symbiodinium genomic repositories using cryo-preservation (Hagedorn et al., 560 

2012), analogous to seed banks established for plants (Westengen et al., 2013; Haidet &  561 

Olwell, 2015). Finally, an active dialogue between scientists, coral reef managers, policy 562 

makers, politicians and the general public needs to occur at all steps in the decision tree.  In 563 

this way, we will ensure stakeholder involvement in setting directions and priorities for the 564 

research and development aspects of reef restoration, as well as practical uptake of strategies 565 

and optimal restoration practice in the future. 566 
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Figure 1: Intraspecific variation in bleaching tolerance in sympatry. 954 

Two adjacent Orbicella faveolata colonies in the upper Florida Keys showing different 955 

bleaching responses to thermal stress in September 2015.  Photocredit: NOAA-Southeast 956 

Fisheries Science Center.  957 

 958 

Figure 2: Proposed decision tree for coral reef restoration including assisted evolution. 959 

The various steps in the tree are explained in the section Integration of assisted evolution into 960 

coral reef restoration: a decision tree in the text. The selection of the restoration strategy 961 

depends on the causes underlying the lack of recovery as well as the restoration targets (e.g., 962 
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historical or hybrid ecosystem, percent coral cover, coral diversity, etc.). The process is 963 

iterative and forms part of an adaptive management framework, the outcomes of which feed 964 

back into the process with the aim of improved reef status. Communication strategies and 965 

cryo-repositories are ongoing throughout the process.   966 
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